

Series JBB/5

SET-2

कोड नं. 430/5/2

रोल नं.				
Roll No.				

परीक्षार्थी कोड को उत्तर-पुस्तिका के मुख-पृष्ठ पर अवश्य लिखें।

Candidates must write the Code on the title page of the answer-book.

100	iii (Sa
	ЖĒ
20	OR OF
\simeq	
101	200

	नोट		NOTE
(I)	कृपया जाँच कर लें कि इस प्रश्न-पत्र में मुद्रित पृष्ठ 19 हैं ।	(I)	Please check that this question paper contains 19 printed pages.
(II)	प्रश्न-पत्र में दाहिने हाथ की ओर दिए गए कोड नम्बर को छात्र उत्तर-पुस्तिका के मुख-पृष्ठ पर लिखें।	(II)	Code number given on the right hand side of the question paper should be written on the title page of the answer-book by the candidate.
(III)	कृपया जाँच कर लें कि इस प्रश्न-पत्र में $f 40$ प्रश्न हैं।	(III)	Please check that this question paper contains 40 questions.
(IV)	कृपया प्रश्न का उत्तर लिखना शुरू करने से पहले, उत्तर-पुस्तिका में प्रश्न का क्रमांक अवश्य लिखें।	(IV)	Please write down the Serial Number of the question in the answer-book before attempting it.
(V)	इस प्रश्न-पत्र को पढ़ने के लिए 15 मिनट का समय दिया गया है । प्रश्न-पत्र का वितरण पूर्वाह्न में 10.15 बजे किया जाएगा । 10.15 बजे से 10.30 बजे तक छात्र केवल प्रश्न-पत्र को पढ़ेंगे और इस अवधि के दौरान वे उत्तर-पुस्तिका पर कोई उत्तर नहीं लिखेंगे।	(V)	15 minute time has been allotted to read this question paper. The question paper will be distributed at 10.15 a.m. From 10.15 a.m. to 10.30 a.m., the students will read the question paper only and will not write any answer on the answer-book during this period.

गणित (बुनियादी) 🎆 MATHEMATICS (BASIC)

निर्धारित समय : 3 घण्टे अधिकतम अंक : 80

Time allowed: 3 hours Maximum Marks: 80

सामान्य निर्देश:

निम्नलिखित निर्देशों को बहुत सावधानी से पढ़िए और उनका सख्ती से पालन कीजिए :

- (i) प्रश्न-पत्र **चार** खण्डों में विभाजित किया गया है क, ख, ग एवं घ । इस प्रश्न-पत्र में **40** प्रश्न हैं । सभी प्रश्न अनिवार्य हैं ।
- (ii) खण्ड क में प्रश्न संख्या 1 से 20 तक 20 प्रश्न हैं एवं प्रत्येक प्रश्न एक अंक का है।
- (iii) खण्ड ख में प्रश्न संख्या 21 से 26 तक 6 प्रश्न हैं एवं प्रत्येक प्रश्न दो अंकों का है।
- (iv) खण्ड ग में प्रश्न संख्या 27 से 34 तक 8 प्रश्न हैं एवं प्रत्येक प्रश्न **तीन** अंकों का है।
- (v) खण्ड घ में प्रश्न संख्या 35 से 40 तक 6 प्रश्न हैं एवं प्रत्येक प्रश्न **चार** अंकों का है।
- (vi) प्रश्न-पत्र में समग्र पर कोई विकल्प नहीं है। तथापि एक-एक अंक वाले दो प्रश्नों में, दो-दो अंकों वाले दो प्रश्नों में, तीन-तीन अंकों वाले तीन प्रश्नों में, चार-चार अंकों वाले तीन प्रश्नों में आंतरिक विकल्प दिए गए हैं। ऐसे प्रश्नों में केवल एक ही विकल्प का उत्तर लिखिए।
- (vii) इसके अतिरिक्त, आवश्यकतानुसार, प्रत्येक खण्ड और प्रश्न के साथ यथोचित निर्देश दिए गए हैं।
- (viii) कैलकुलेटर के प्रयोग की अनुमित **नहीं** है।

खण्ड क

प्रश्न संख्या 1 से 20 तक प्रत्येक प्रश्न 1 अंक का है।

प्रश्न संख्या 1 से 10 में सही विकल्प चुनिए।

1. निम्नलिखित बारंबारता बंटन के लिए:

वर्ग :	0 - 5	5 – 10	10 - 15	15 - 20	20 - 25
बारंबारता :	8	10	19	25	8

माध्यक वर्ग की उच्च सीमा है

- (A) 15
- (B) 10
- (C) 20
- (D) 25
- 2. किसी असंभव घटना के होने की प्रायिकता है
 - (A) 1
 - (B) $\frac{1}{2}$
 - (C) परिभाषित नहीं
 - (D) 0

General Instructions:

Read the following instructions very carefully and strictly follow them:

- (i) This question paper comprises **four** sections A, B, C and D. This question paper carries **40** questions. All questions are compulsory.
- (ii) Section A: Question Numbers 1 to 20 comprises of 20 questions of one mark each.
- (iii) Section B: Question Numbers 21 to 26 comprises of 6 questions of two marks each.
- (iv) Section C: Question Numbers 27 to 34 comprises of 8 questions of three marks each.
- (v) Section D: Question Numbers **35** to **40** comprises of **6** questions of **four** marks each.
- (vi) There is no overall choice in the question paper. However, an internal choice has been provided in 2 questions of one mark, 2 questions of two marks, 3 questions of three marks and 3 questions of four marks. You have to attempt only one of the choices in such questions.
- (vii) In addition to this, separate instructions are given with each section and question, wherever necessary.
- (viii) Use of calculators is **not** permitted.

SECTION A

Question numbers 1 to 20 carry 1 mark each.

Choose the correct option in question numbers 1 to 10.

1. For the following frequency distribution :

Class:	0 - 5	5 - 10	10 - 15	15 - 20	20 - 25
Frequency:	8	10	19	25	8

The upper limit of median class is

- (A) 15
- (B) 10
- (C) 20
- (D) 25
- **2.** The probability of an impossible event is
 - (A) 1
 - (B) $\frac{1}{2}$
 - (C) not defined
 - (D) 0

- $(A) \quad (-3, 6)$
- (B) (6, -6)
- (C) (6, -12)
- (D) $(\frac{3}{2}, -3)$

4. द्विघाती समीकरण $4x^2 - 6x + 3 = 0$ का विविक्तकर (discriminant) है

- (A) 12
- (B) 84
- (C) $2\sqrt{3}$
- (D) -12

5. आकृति-1 में दिए गए वृत्त में, स्पर्श-रेखा PQ के समान्तर खींची जाने वाली स्पर्श-रेखाओं की संख्या है

- (A) 0
- (B) अनेक
- (C) 2
- (D) 1

6. $8 \cot^2 A - 8 \csc^2 A$ बराबर है

- (A) 8
- (B) $\frac{1}{8}$
- (C) -8
- (D) $-\frac{1}{8}$

MOTORITE IMMENDERATION FOR RADIOMETE AND MOTORITHE SAME MOTORITE SAME RADIOMETERAD MOTORITHM WOTERS (MAN)

- 3. If (3, -6) is the mid-point of the line segment joining (0, 0) and (x, y), then the point (x, y) is
 - $(A) \quad (-3, 6)$
 - (B) (6, -6)
 - (C) (6, -12)
 - (D) $(\frac{3}{2}, -3)$
- **4.** The discriminant of the quadratic equation $4x^2 6x + 3 = 0$ is
 - (A) 12
 - (B) 84
 - (C) $2\sqrt{3}$
 - (D) -12
- 5. In the given circle in Figure-1, number of tangents parallel to tangent PQ is

Figure-1

- (A) 0
- (B) many
- (C) 2
- (D) 1
- 6. $8 \cot^2 A 8 \csc^2 A$ is equal to
 - (A) 8
 - (B) $\frac{1}{8}$
 - (C) -8
 - (D) $-\frac{1}{8}$

		MITTATION SHAPE STATEMENT AND ANY THE CONTROL OF THE STATEMENT AND ANY THE CONTROL OF THE STATEMENT AND ANY TH
7.		पर स्थित बिंदु जो (2, 3) तथा (6, – 9) को जोड़ने वाले रेखाखंड को 1 : 3 के त में विभाजित करता है, के निर्देशांक हैं
	(A)	(4, -3)
		(6, 0)
	(C)	(3, 0)
	(D)	(0, 3)
8.	यदि रैी	खेक समीकरणों का एक युग्म संगत है, तो निरूपित रेखाएँ
	(A)	समान्तर हैं
		प्रतिच्छेदी या संपाती हैं
		हमेशा संपाती होती हैं
	, ,	हमेशा प्रतिच्छेदी होती हैं
9.	शंक वे	न छिन्नक के आकार के एक गिलास का सम्पूर्ण पृष्ठीय क्षेत्रफल है $(\mathbf{r_1} > \mathbf{r_2})$
	•	$\pi \mathbf{r}_1 l + \pi \mathbf{r}_2 l$
	(B)	$\pi l (\mathbf{r}_1 + \mathbf{r}_2) + \pi \mathbf{r}_2^2$
	(C)	$\frac{1}{3}\pi h (r_1^2 + r_2^2 + r_1 r_2)$
	(D)	$\sqrt{h^2 + (r_1 - r_2)^2}$
10.	संख्या	120 को अभाज्य गुणनखंडों के गुणनफल के रूप में व्यक्त करने पर निम्न प्राप्त होता है :
	(A)	$5 \times 8 \times 3$
	(B)	15×2^3
		$10 \times 2^2 \times 3$
		$5 \times 2^3 \times 3$
प्रश्न र	सख्या 11	! से 15 में रिक्त स्थान भरिए।
11.		न ABCD का क्षेत्रफल = Δ ABC का क्षेत्रफल + का क्षेत्रफल।
12.		ो गोलों की त्रिज्याओं का अनुपात 2:3 है, तो इन गोलों के आयतनों का अनुपात होगा।
13.	यदि ब	हुपद $\mathrm{ax}^2-2\mathrm{x}$ का एक शून्यक 2 है, तो 'a' का मान $___\$ है ।
14.		वृत्त को दो बिंदुओं पर प्रतिच्छेदित करने वाली रेखा को कहते हैं।
15.	सभी व	र्ग होते हैं । (सर्वांगसम/समरूप)

- MICE SHOULD SERVE SHOW SHOULD SERVE SHOULD SHOW SHOULD SHOULD SHOW SHOULD SHOULD SHOULD SHOW SHOULD SHOULD
- 7. The point on x-axis which divides the line segment joining (2, 3) and (6, -9) in the ratio 1:3 is
 - (A) (4, -3)
 - (B) (6, 0)
 - (C) (3,0)
 - (D) (0, 3)
- **8.** If a pair of linear equations is consistent, then the lines represented by them are
 - (A) parallel
 - (B) intersecting or coincident
 - (C) always coincident
 - (D) always intersecting
- **9.** The total surface area of a frustum-shaped glass tumbler is $(r_1 > r_2)$
 - (A) $\pi r_1 l + \pi r_2 l$
 - (B) $\pi l (r_1 + r_2) + \pi r_2^2$
 - (C) $\frac{1}{3}\pi h (r_1^2 + r_2^2 + r_1 r_2)$
 - (D) $\sqrt{h^2 + (r_1 r_2)^2}$
- 10. 120 can be expressed as a product of its prime factors as
 - (A) $5 \times 8 \times 3$
 - (B) 15×2^3
 - (C) $10 \times 2^2 \times 3$
 - (D) $5 \times 2^3 \times 3$

Fill in the blanks in question numbers 11 to 15.

- 11. Area of quadrilateral ABCD = Area of \triangle ABC + Area of ______.
- **12.** If the radii of two spheres are in the ratio 2:3, then the ratio of their respective volumes is ______.
- 13. If 2 is a zero of the polynomial $ax^2 2x$, then the value of 'a' is ______.
- **14.** A line intersecting a circle in two points is called a ______.
- 15. All squares are ______. (congruent/similar)

प्रश्न संख्या 16 से 20 में निम्नलिखित के उत्तर दीजिए :

- एक पासा एक बार फेंका जाता है। यदि संख्या 6 के आने को सफलता माना जाए, तो 16. असफल होने की प्रायिकता ज्ञात कीजिए।
- यदि -6, x, 8 एक समांतर श्रेढी के क्रमित पद हैं, तो x का मान ज्ञात कीजिए । 17.

समांतर श्रेढी - 27, - 22, - 17, - 12,... का 11वाँ पद ज्ञात कीजिए।

आकृति-2 में, भूमि के एक बिंदु B से मीनार AC के शिखर का उन्नयन कोण 60° है । यदि 18. मीनार की ऊँचाई 20 मी. हो, तो मीनार के पाद-बिंदु से इस बिंदु की दूरी ज्ञात कीजिए।

आकृति-2

मान ज्ञात कीजिए: 19.

.430/5/2

 $\tan 40^{\circ} \times \tan 50^{\circ}$

अथवा

यदि $\cos A = \sin 42^\circ$ है, तो A का मान ज्ञात कीजिए।

उस शंकु की ऊँचाई ज्ञात कीजिए जिसकी त्रिज्या 5 सेमी तथा तिर्यक ऊँचाई 13 सेमी है। 20.

खण्ड ख

प्रश्न संख्या 21 से 26 में प्रत्येक प्रश्न 2 अंकों का है।

आकृति-3 में, \triangle ABC तथा \triangle XYZ दर्शाए गए हैं । यदि AB = 3 सेमी, BC = 6 सेमी, 21. $AC = 2\sqrt{3}$ सेमी, $\angle A = 80^{\circ}$, $\angle B = 60^{\circ}$, $XY = 4\sqrt{3}$ सेमी, YZ = 12 सेमी तथा XZ = 6 सेमी है, तो $\angle Y$ का मान ज्ञात कीजिए ।

Answer the following question numbers 16 to 20:

- **16.** A dice is thrown once. If getting a six, is a success, then find the probability of a failure.
- 17. Find the value of x so that -6, x, 8 are in A.P.

OR

Find the 11^{th} term of the A.P. -27, -22, -17, -12, ...

18. In Figure-2, the angle of elevation of the top of a tower AC from a point B on the ground is 60°. If the height of the tower is 20 m, find the distance of the point from the foot of the tower.

Figure-2

19. Evaluate:

 $\tan 40^{\circ} \times \tan 50^{\circ}$

OR

If $\cos A = \sin 42^{\circ}$, then find the value of A.

20. Find the height of a cone of radius 5 cm and slant height 13 cm.

SECTION B

Question numbers 21 to 26 carry 2 marks each.

21. In Figure-3, \triangle ABC and \triangle XYZ are shown. If AB = 3 cm, BC = 6 cm, AC = $2\sqrt{3}$ cm, \angle A = 80° , \angle B = 60° , XY = $4\sqrt{3}$ cm, YZ = 12 cm and XZ = 6 cm, then find the value of \angle Y.

Figure-3

22. निम्नलिखित बंटन का माध्य ज्ञात कीजिए :

वर्ग :	5 – 15	15 – 25	25 - 35	35 - 45
बारंबारता :	2	4	3	1

अथवा

निम्नलिखित बंटन 100 कर्मचारियों के आने-जाने के खर्चों को दर्शाता है :

व्यय (₹ में):	200 – 400	400 – 600	600 – 800	800 – 1000	1000 – 1200
कर्मचारियों की संख्या :	21	25	19	23	12

इस बंटन का बहुलक ज्ञात कीजिए।

23. x के लिए हल कीजिए :

$$2x^2 + 5\sqrt{5}x - 15 = 0$$

24. जाँच कीजिए कि क्या किसी प्राकृत संख्या n के लिए संख्या 6^n अंक '0' (शून्य) पर समाप्त हो सकती है ।

अथवा

150 तथा 200 का ल.स. (LCM) ज्ञात कीजिए।

- 25. यदि $5 \tan \theta = 4$ है, तो दर्शाइए कि $\frac{5 \sin \theta 3 \cos \theta}{5 \sin \theta + 3 \cos \theta} = \frac{1}{7}$.
- 26. किसी कारणवश 14 ख़राब बल्ब, 98 अच्छे बल्बों में मिल गए हैं । केवल यह देखकर नहीं बताया जा सकता है कि कोई बल्ब ख़राब है या नहीं । इस मिश्रण में से एक बल्ब यादृच्छया निकाला जाता है । निकाले गए बल्ब के अच्छा होने की प्रायिकता ज्ञात कीजिए ।

22. Find the mean for the following distribution :

Classes:	5 - 15	15 - 25	25 - 35	35 - 45	
Frequency:	2	4	3	1	

OR

The following distribution shows the transport expenditure of 100 employees:

Expenditure (in ₹):	200 – 400	400 – 600	600 – 800	800 – 1000	1000 – 1200
Number of employees:	21	25	19	23	12

Find the mode of the distribution.

23. Solve for x:

$$2x^2 + 5\sqrt{5} x - 15 = 0$$

24. Check whether 6ⁿ can end with the digit '0' (zero) for any natural number n.

OR

Find the LCM of 150 and 200.

25. If
$$5 \tan \theta = 4$$
, show that $\frac{5 \sin \theta - 3 \cos \theta}{5 \sin \theta + 3 \cos \theta} = \frac{1}{7}$.

26. 14 defective bulbs are accidentally mixed with 98 good ones. It is not possible to just look at the bulb and tell whether it is defective or not. One bulb is taken out at random from this lot. Determine the probability that the bulb taken out is a good one.

खण्ड ग

प्रश्न संख्या 27 से 34 में प्रत्येक प्रश्न 3 अंकों का है।

27. कृष्णा के पास एक सेबों का बाग है जिसके साथ एक 10 मी. × 10 मी. साइज़ का एक किचन गार्डन है । उसने उसे एक 10 × 10 ग्रिड में बाँटकर उसमें मिट्टी तथा खाद डाली है । उसने बिंदु A पर एक नींबू का पौधा, बिंदु B पर धिनए का पौधा, बिंदु C पर प्याज का पौधा तथा बिंदु D पर एक टमाटर का पौधा लगाया है । उसका पित राम किचन गार्डन को देखकर तारीफ़ करता है तथा कहता है कि A, B, C तथा D को मिलाने पर वह शायद एक समांतर चतुर्भुज बन जाए । नीचे दिए गए चित्र को ध्यानपूर्वक देखकर निम्नलिखित के उत्तर दीजिए :

- (i) निर्देशांक अक्ष के रूप में 10×10 ग्रिड का उपयोग करते हुए बिंदुओं A, B, C तथा D के निर्देशांक ज्ञात कीजिए।
- (ii) ज्ञात कीजिए कि क्या ABCD एक समांतर चतुर्भुज है या नहीं ।
- **28.** सिद्ध कीजिए कि $\sqrt{3}$ एक अपरिमेय संख्या है ।
- 29. सिद्ध कीजिए कि:

$$\frac{\tan \theta}{1 - \cot \theta} + \frac{\cot \theta}{1 - \tan \theta} = 1 + \sec \theta \csc \theta$$

SECTION C

Question numbers 27 to 34 carry 3 marks each.

27. Krishna has an apple orchard which has a 10 m × 10 m sized kitchen garden attached to it. She divides it into a 10 × 10 grid and puts soil and manure into it. She grows a lemon plant at A, a coriander plant at B, an onion plant at C and a tomato plant at D. Her husband Ram praised her kitchen garden and points out that on joining A, B, C and D they may form a parallelogram. Look at the below figure carefully and answer the following questions:

- (i) Write the coordinates of the points A, B, C and D, using the 10×10 grid as coordinate axes.
- (ii) Find whether ABCD is a parallelogram or not.
- **28.** Prove that $\sqrt{3}$ is an irrational number.
- **29.** Prove that :

$$\frac{\tan \theta}{1 - \cot \theta} + \frac{\cot \theta}{1 - \tan \theta} = 1 + \sec \theta \csc \theta$$

- **30.** दो संकेंद्रीय वृत्तों की त्रिज्याएँ 5 सेमी तथा 3 सेमी हैं। बड़े वृत्त की उस जीवा की लंबाई ज्ञात कीजिए जो छोटे वृत्त को स्पर्श करती हो।
- 31. दो संख्याओं का अन्तर 26 है तथा बड़ी संख्या, छोटी संख्या के तीन गुने से 4 अधिक है। संख्याएँ ज्ञात कीजिए।

अथवा

x तथा y के लिए हल कीजिए:

$$\frac{2}{x} + \frac{3}{y} = 13$$
 तथा $\frac{5}{x} - \frac{4}{y} = -2$

32. आकृति-4 में, AB और CD केन्द्र O वाले वृत्त के दो परस्पर लम्ब व्यास हैं तथा OD छोटे वृत्त का व्यास है। यदि OA = 7 सेमी है, तो छायांकित भाग का क्षेत्रफल ज्ञात कीजिए।

आकृति-4

अथवा

आकृति-5 में, 7 सेमी भुजा वाले वर्ग ABCD के परिगत एक वृत्त खींचा गया है। छायांकित भाग का क्षेत्रफल ज्ञात कीजिए।

आकृति-5

- **30.** Two concentric circles are of radii 5 cm and 3 cm. Find the length of chord of the larger circle which touches the smaller circle.
- **31.** The difference between two numbers is 26 and the larger number exceeds thrice of the smaller number by 4. Find the numbers.

OR

Solve for x and y:

$$\frac{2}{x} + \frac{3}{y} = 13$$
 and $\frac{5}{x} - \frac{4}{y} = -2$

32. In Figure-4, AB and CD are two diameters of a circle (with centre O) perpendicular to each other and OD is the diameter of the smaller circle.

If OA = 7 cm, then find the area of the shaded region.

Figure-4

OR.

In Figure-5, ABCD is a square with side 7 cm. A circle is drawn circumscribing the square. Find the area of the shaded region.

Figure-5

33. 4 सेमी, 5 सेमी तथा 6 सेमी भुजाओं वाले एक त्रिभुज की रचना कीजिए । फिर इसके समरूप एक और त्रिभुज की रचना कीजिए जिसकी भुजाएँ पहले त्रिभुज की संगत भुजाओं की $\frac{2}{3}$ गुनी हों ।

अथवा

- 2.5 सेमी त्रिज्या का एक वृत्त खींचिए । इसके केन्द्र से 8 सेमी दूर स्थित एक बिंदु P लीजिए । वृत्त पर बिंदु P से स्पर्श-रेखा युग्म की रचना कीजिए ।
- **34.** यदि एक समांतर श्रेढी के प्रथम 7 पदों का योगफल 49 है तथा प्रथम 17 पदों का योगफल 289 है, तो प्रथम n पदों का योगफल ज्ञात कीजिए ।

खण्ड घ

प्रश्न संख्या 35 से 40 तक प्रत्येक प्रश्न 4 अंकों का है।

35. दो पानी के नल एक साथ एक हौज़ को $9\frac{3}{8}$ घंटों में भर सकते हैं । बड़े व्यास वाला नल हौज़ को भरने में, कम व्यास वाले नल से 10 घंटे कम समय लेता है । प्रत्येक नल द्वारा अलग-अलग हौज़ को भरने का समय ज्ञात कीजिए ।

अथवा

एक ऐसे आयताकार पार्क को बनाना है जिसकी चौड़ाई उसकी लम्बाई से 3 मी. कम हो । इसका क्षेत्रफल पहले से निर्मित समद्विबाहु त्रिभुजाकार पार्क जिसका आधार आयताकार पार्क की चौड़ाई के बराबर तथा ऊँचाई 12 मी. है, से 4 वर्ग मीटर अधिक हो । इस पार्क की लम्बाई और चौड़ाई ज्ञात कीजिए।

- 36. एक शंकु के छिन्नक का वक्र पृष्ठीय क्षेत्रफल ज्ञात कीजिए जिसकी ऊँचाई 12 सेमी तथा वृत्तीय सिरों की त्रिज्याएँ 9 सेमी तथा 4 सेमी हैं।
- 37. निम्नलिखित बारंबारता बंटन के लिए 'से कम प्रकार' का तोरण खींचिए :

वर्ग :	0 – 10	10 – 20	20 – 30	30 – 40	40 – 50	50 – 60	60 - 70	70 – 80
बारंबारता :	7	14	13	12	20	11	15	8

33. Construct a triangle with its sides 4 cm, 5 cm and 6 cm. Then construct a triangle similar to it whose sides are $\frac{2}{3}$ of the corresponding sides of the first triangle.

OR

Draw a circle of radius 2.5 cm. Take a point P at a distance of 8 cm from its centre. Construct a pair of tangents from the point P to the circle.

34. If the sum of first 7 terms of an A.P. is 49 and that of 17 terms is 289, then find the sum of first n terms.

SECTION D

Question numbers 35 to 40 carry 4 marks each.

35. Two water taps together can fill a tank in $9\frac{3}{8}$ hours. The tap of larger diameter takes 10 hours less than the smaller one to fill the tank separately. Find the time in which each tap can separately fill the tank.

OR

A rectangular park is to be designed whose breadth is 3 m less than its length. Its area is to be 4 square metres more than the area of a park that has already been made in the shape of an isosceles triangle with its base as the breadth of the rectangular park and of altitude 12 m. Find the length and breadth of the park.

- **36.** Find the curved surface area of frustum of a cone of height 12 cm and radii of circular ends are 9 cm and 4 cm.
- **37.** Draw a 'less than' ogive for the following frequency distribution :

Classes:	0 – 10	10 – 20	20 – 30	30 – 40	40 – 50	50 - 60	60 – 70	70 – 80
Frequency:	7	14	13	12	20	11	15	8

38. यदि किसी त्रिभुज की एक भुजा के समांतर अन्य दो भुजाओं को भिन्न-भिन्न बिंदुओं पर प्रतिच्छेद करने के लिए एक रेखा खींची जाए, तो सिद्ध कीजिए कि ये अन्य दो भुजाएँ एक ही अनुपात में विभाजित होती हैं।

अथवा

आकृति-6 में, समबाहु त्रिभुज ABC में, AD \perp BC, BE \perp AC तथा CF \perp AB हैं । सिद्ध कीजिए कि $4~({\rm AD}^2+{\rm BE}^2+{\rm CF}^2)=9~{\rm AB}^2.$

39. बहुपद $p(x) = 3x^4 - 4x^3 - 10x^2 + 8x + 8$ के अन्य शून्यक ज्ञात कीजिए, यदि $\sqrt{2}$ तथा $-\sqrt{2}$, इसके दो शून्यक दिए गए हैं ।

अथवा

बहुपद $g(x) = x^3 - 3x^2 + x + 2$ को बहुपद $x^2 - 2x + 1$ से विभाजित कीजिए तथा विभाजन ऐल्गोरिथ्म की सत्यता की जाँच कीजिए ।

40. एक नहर के एक तट पर एक टीवी टॉवर ऊर्ध्वाधरतः खड़ा है। टॉवर के ठीक सामने दूसरे तट पर के एक बिंदु से टॉवर के शिखर का उन्नयन कोण 60° है। इसी तट पर इस बिंदु से 20 मी. दूर और इस बिंदु को टॉवर के पाद से मिलाने वाली रेखा पर स्थित एक अन्य बिंदु से टॉवर के शिखर का उन्नयन कोण 30° है। नहर की चौड़ाई ज्ञात कीजिए।

38. If a line is drawn parallel to one side of a triangle to intersect the other two sides in distinct points, prove that the other two sides are divided in the same ratio.

OR

In Figure-6, in an equilateral triangle ABC, AD \perp BC, BE \perp AC and CF \perp AB. Prove that $4 (AD^2 + BE^2 + CF^2) = 9 AB^2$.

Figure-6

39. Find other zeroes of the polynomial

$$p(x) = 3x^4 - 4x^3 - 10x^2 + 8x + 8,$$

if two of its zeroes are $\sqrt{2}$ and $-\sqrt{2}$.

OR

Divide the polynomial $g(x) = x^3 - 3x^2 + x + 2$ by the polynomial $x^2 - 2x + 1$ and verify the division algorithm.

40. A TV tower stands vertically on the bank of a canal. From a point on the other bank directly opposite the tower, the angle of elevation of the top of the tower is 60°. From another point on the same bank, which is 20 m away from this point, on the line joining this point to the foot of the tower, the angle of elevation of the top of the tower is 30°. Find the width of the canal.