I’m super excited to teach you the lewis structure of H2Te in just 6 simple steps.
Infact, I’ve also given the step-by-step images for drawing the lewis dot structure of H2Te molecule.
So, if you are ready to go with these 6 simple steps, then let’s dive right into it!
Lewis structure of H2Te contains single bonds between the Tellurium (Te) atom and each Hydrogen (H) atom. The Tellurium atom (Te) is at the center and it is surrounded by 2 Hydrogen atoms (H). The Tellurium atom have 2 lone pairs.
Let’s draw and understand this lewis dot structure step by step.
(Note: Take a pen and paper with you and try to draw this lewis structure along with me. I am sure you will definitely learn how to draw lewis structure of H2Te).
6 Steps to Draw the Lewis Structure of H2Te
Step #1: Calculate the total number of valence electrons
Here, the given molecule is H2Te. In order to draw the lewis structure of H2Te, first of all you have to find the total number of valence electrons present in the H2Te molecule.
(Valence electrons are the number of electrons present in the outermost shell of an atom).
So, let’s calculate this first.
Calculation of valence electrons in H2Te
- For Hydrogen:
Hydrogen is a group 1 element on the periodic table.
Hence, the valence electron present in hydrogen is 1 (see below image).
- For Tellurium:
Tellurium is a group 16 element on the periodic table.
Hence, the valence electrons present in tellurium is 6 (see below image).
Hence in a H2Te molecule,
Valence electrons given by Tellurium (Te) atom = 6
Valence electron given by each Hydrogen (H) atom = 1
So, total number of Valence electrons in H2Te molecule = 1(2) + 6 = 8
Step #2: Select the center atom (H is always outside)
While selecting the center atom, always put the least electronegative atom at the center.
(Remember: Fluorine is the most electronegative element on the periodic table and the electronegativity decreases as we move right to left in the periodic table as well as top to bottom in the periodic table). [1]
Here in the H2Te molecule, if we compare the hydrogen atom (H) and tellurium atom (Te), then hydrogen is less electronegative than tellurium. But as per the rule, we have to keep hydrogen outside.
So, tellurium should be placed in the center and the remaining 2 hydrogen atoms will surround it.
Step #3: Put two electrons between the atoms to represent a chemical bond
Now in the above sketch of H2Te molecule, put the two electrons (i.e electron pair) between the tellurium atom and each hydrogen atom to represent a chemical bond between them.
These pairs of electrons present between the Tellurium (Te) and Hydrogen (H) atoms form a chemical bond, which bonds the tellurium and hydrogen atoms with each other in a H2Te molecule.
Step #4: Complete the octet (or duplet) on outside atoms. If the valence electrons are left, then put the valence electrons pair on the central atom
Don’t worry, I’ll explain!
In the Lewis structure of H2Te, the outer atoms are hydrogen atoms.
So now, you have to check whether these hydrogen atoms are forming a duplet or not! (because hydrogen requires only 2 electrons to have a complete outer shell).
You can see in the above image that all the hydrogen atoms form a duplet.
Also, only 4 valence electrons of H2Te molecule are used in the above structure.
But there are total 8 valence electrons in H2Te molecule (as calculated in step #1).
So the number of electrons left to be kept on the central atom = 8 – 4 = 4.
So let’s keep these 4 electrons (i.e 2 electron pairs) on the central atom.
Now, let’s move to the next step.
Step #5: Check whether the central atom has octet or not. If it does not have an octet, then move the electron pair from the outer atom to form a double bond or triple bond
In this step, we have to check whether the central atom (i.e tellurium) has an octet or not.
In simple words, we have to check whether the central Tellurium (Te) atom has 8 electrons or not.
As you can see from the above image, the central atom (i.e tellurium), has 8 electrons. So it fulfills the octet rule and the tellurium atom is stable.
Step #6: Final step – Check the stability of lewis structure by calculating the formal charge on each atom
Now, you have come to the final step and here you have to check the formal charge on tellurium atom (Te) as well as each hydrogen atom (H).
For that, you need to remember the formula of formal charge;
Formal charge = Valence electrons – Nonbonding electrons – (Bonding electrons)/2
- For Hydrogen:
Valence electron = 1 (as it is in group 1)
Nonbonding electrons = 0
Bonding electrons = 2 - For Tellurium:
Valence electron = 6 (as it is in group 16)
Nonbonding electrons = 4
Bonding electrons = 4
Formal charge | = | Valence electrons | – | Nonbonding electrons | – | (Bonding electrons)/2 | ||
Te | = | 6 | – | 4 | – | 4/2 | = | 0 |
H | = | 1 | – | 0 | – | 2/2 | = | 0 |
So you can see above that the formal charges on tellurium as well as hydrogen are “zero”.
Hence, there will not be any change in the above structure and the above lewis structure of H2Te is the final stable structure only.
Each electron pair (:) in the lewis dot structure of H2Te represents the single bond ( | ). So the above lewis dot structure of H2Te can also be represented as shown below.
Related lewis structures for your practice:
Lewis Structure of TeCl2
Lewis Structure of CH2I2
Lewis Structure of GaI3
Lewis Structure of SeO4 2-
Lewis Structure of BrCl4-
Article by;
Jay is an educator and has helped more than 100,000 students in their studies by providing simple and easy explanations on different science-related topics. With a desire to make learning accessible for everyone, he founded Knords Learning, an online learning platform that provides students with easily understandable explanations.
Read more about our Editorial process.